RAG の最初のステップは、クエリごとに複数のドキュメントを取得することであり、これらのドキュメントはクエリに関連性がないことがよくあります。したがって、これらの結果を改善するために、外部の技術が必要です。結果の関連性が高いほど、検索は強力です。 ベクトル検 ...


RAG の最初のステップは、クエリごとに複数のドキュメントを取得することであり、これらのドキュメントはクエリに関連性がないことがよくあります。したがって、これらの結果を改善するために、外部の技術が必要です。結果の関連性が高いほど、検索は強力です。 ベクトル検 ...
LangChainは、言語モデルと外部知識ベースのパワーを組み合わせることで、言語モデルの能力を向上させる革新的な技術です。LangChainは、リトリーバル・オーグメンテッド・ジェネレーション(RAG)を通じて、言語モデルのパラメータ化された知識と外部ソースの非パラメータ化データの間で情報のシームレスな流れを可能にします。 ...
前回のブログ記事では、ベクトル検索と再順位付けの組み合わせが、テキストからベクトルへの変換中に情報の損失が生じるなど、ベクトル検索の固有の制限に対処する方法として探求されました。この統合により、複雑なクエリ意図に対する堅牢 ...
以前のブログ記事で説明したように、ベクトル検索は、従来のキーワードマッチングよりも洗練された文脈に基づいたアプローチで情報検索を大きく進化させています。テキストを数値ベクトルに変換することで、検索クエリの文脈的な意味をデータと一致させ、検索結果の関連性を向上させることができます。 しかし、 ...