RAG的第一步是检索每个查询的多个文档,通常这些文档与查询无关。因此,我们需要一些外部技术来改进这些结果。最终,搜索的强大程度取决于其结果的相关性。 在应用向量搜索时,由于一些原因,常常会丢失一些语义信息。例如,文档需要被分解为较小的子文档,这可能导致上下文 ...


RAG的第一步是检索每个查询的多个文档,通常这些文档与查询无关。因此,我们需要一些外部技术来改进这些结果。最终,搜索的强大程度取决于其结果的相关性。 在应用向量搜索时,由于一些原因,常常会丢失一些语义信息。例如,文档需要被分解为较小的子文档,这可能导致上下文 ...
LangChain 是一种颠覆我们与语言模型互动方式的尖端技术。LangChain将大型语言模型(LLM)的强大能力与外部知识库相结合,通过检索增强生成(RAG)提升这些模型的能力。这种整合使得参数化的语言模型和来自外部来源的非参数化数据之间的信息流动变得无缝。 本质上,LangChain充当传统语言模型和庞大外部知识库之间 ...
在我们的上一篇博客中,我们探讨了将向量搜索与重新排序方法相结合,以解决向量搜索的固有限制,例如在文本到向量转换过程中可能丢失信息的问题。这种集成使其成为复杂查询意图的强大解决方案,显著提高了整体搜索准确性。 在当今各种重 ...
正如我们之前的一篇博文所探讨的,向量搜索通过将文本转换为数值向量,突破了传统关键词匹配的局限,为信息检索带来了革命性的进展。这种方法能够捕捉文本的上下文信息,从而提高搜索结果的相关性。然而,向量搜索并非完美无缺。从文本到向量的转换过程不可避免地会导致信息丢失,进而影响搜索的准确性。 为了解 ...